Since AMD’s introduction of its newest Zen 3 core for desktop users, the implementation for notebooks and mobile users has been eagerly awaited. In a single generation, on the same manufacturing process, AMD extracted +19% more performance per clock (we verified), so for any system that is power limited, extra performance is often very well received. AMD announced its new Ryzen 5000 Mobile processor family at the start of the year, with processors from 15W to 45W+ in the pipeline, and the first mobile systems coming to market in February. AMD sent us a peak example of Ryzen 5000 Mobile for today’s review, the 35W Ryzen 9 5980HS, as contained in the ASUS ROG Flow X13.

Ryzen 5000 Mobile: Eight Zen 3 cores and Vega 8 Graphics

For those that didn’t catch the original announcement a couple of weeks ago, here is a recap of the Ryzen 5000 Mobile family as well as the key points from the announcement.

The Ryzen 5000 Mobile processor series is an upgrade over last year’s Ryzen 4000 Mobile processor series. AMD co-designed both of these processor families to re-use key parts of the chip design, enabling a fast time-to-market and quicker upgrade cycle for AMD’s notebook manufacturing partners (OEMs), like Dell, HP, Lenovo, and others. The major difference between the two processors that most users will encounter is that the new hardware uses eight of AMD’s latest Zen 3 CPU cores, which is an upgrade over the eight Zen 2 cores from last year. The highlight is the +19% raw performance uplift when comparing the two at the same frequency.

Under the hood, there are a few more key changes that enthusiasts will be interested in. The new 8-core Zen 3 design shares a combined 16 MB L3 cache, which enables any of the eight cores to access the full cache, reducing latency to main memory (from 4 MB to 16 MB) compared to the previous design which had two clusters of four Zen 2 cores, each with 4 MB of cache.

The new processor is 180 mm2 in size, compared to 156 mm2 of last generation, but still fits into the same socket. It contains 10.7 billion transistors, which is up from 9.8 billion. This means an effective decrease in transistor density, although we know that Zen 3 cores are slightly larger than Zen 2 cores, and some additional security measures have been added (more on this on the next page).


AMD CEO Dr. Lisa Su Showcasing Ryzen 5000 Mobile at CES

Users may be upset that the new processor range only features Vega 8 graphics, the same as last year’s design, however part of the silicon re-use comes in here enabling AMD to come to market in a timely manner. The Vega 8 design in the previous generation already had a big boost in efficiency and frequency, and this time around we get another +350 MHz on the high-end. Users who want to see RDNA in a mobile processor may have to wait longer. AMD’s re-use strategy may lend itself to changing CPU one generation, GPU the next – we will have to wait and see.

There are other SoC changes, which we will get to later in this review.

The Ryzen 5000 Mobile family is split into two broad product ranges, but both ranges use the same underlying silicon. At the top is the traditional 45 W H-series processors, aimed at productivity notebook designs. For this generation, AMD is pairing the traditional 45 W parts with a range of 35 W ‘HS’ models, optimized for more efficient designs – this will be AMD’s second generation of 35 W ‘HS’ class processors. AMD is also introducing a new range of ‘HX’ processors at 45 W and above which will allow AMD’s partners to co-design high-performance and/or overclockable AMD notebook solutions.

AMD Ryzen 5000 Mobile: H-Series
AnandTech Cores
Threads
Base
Freq
Boost
Freq
GPU
Cores
GPU
Freq
TDP Zen
Ryzen 9 5980HX 8C / 16T 3300 4800 8 2100 45W+ Zen3
Ryzen 9 5980HS 8C / 16T 3000 4800 8 2100 35W Zen3
Ryzen 9 5900HX 8C / 16T 3300 4600 8 2100 45W+ Zen3
Ryzen 9 5900HS 8C / 16T 3000 4600 8 2100 35W Zen3
Ryzen 7 5800H 8C / 16T 3200 4400 8 2000 45W Zen3
Ryzen 7 5800HS 8C / 16T 2800 4400 8 2000 35W Zen3
Ryzen 5 5600H 6C / 12T 3300 4200 7 1800 45W Zen3
Ryzen 5 5600HS 6C / 12T 3000 4200 7 1800 35W Zen3

When HS was introduced last year with Ryzen 4000 Mobile, it was an AMD-OEM partnership-only co-designed product requiring AMD approval in order to have access to them. This year however, they seem to be part of the full stack, indicating perhaps that demand for these HS designs was higher than expected.

The new HX models are here to enable high-end gaming, workstation, and desktop-replacement systems, as well as enabling vendors to supply overclockable laptops into the market with sufficient cooling provided. Overclockable laptops isn’t a new concept (Intel has been doing it a while), but it seems that AMD’s partners have requested higher power parts in order to enable this market on AMD. The official TDP for these processors is 45+ W, showcasing that partners can adjust the sustained TDP values north of 45 W if required, likely up to 65 W as needed. In the past, if OEMs wanted to go down this route, they would need to build a portable chassis capable of supporting a desktop processor.

There is some slight deviation from the regular H-series, in that there is no Ryzen 9 standard ‘H’ processor. The Ryzen 7 5800H will sit at the top of that particular market, but the way these numbering systems work means that the Ryzen 7 still has the full eight cores and fast integrated graphics. In that instance, Ryzen 9, with only HS and HX models, are arguably for more ‘specialist’ focused designs.

AMD is advertising the Ryzen 9 5980HS as the best processor for portable gaming performance, while the Ryzen 9 5980HX is ‘the best mobile processor for gaming’. As part of the launch day materials, AMD showcases the Ryzen 9 5980HS as scoring 600 pts in Cinebench R20, which would put it at the same level of performance as AMD’s desktop-class Zen 3 processors. We didn’t quite score 600 in this review with the R9 5980HS (we scored 578).  

The traditional 15 W processors, used for ultra-thin and light portable notebooks, form part of the Ryzen 5000 Mobile U-series. AMD is enabling a number of parts with updated Zen 3 cores, but also introducing several processors based on the older Zen 2 design, albeit with updates.

AMD Ryzen 5000 Mobile: U-Series
AnandTech Cores
Threads
Base
Freq
Boost
Freq
GPU
Cores
GPU
Freq
TDP Zen
Zen3
Ryzen 7 5800U 8C / 16T 1900 4400 8 2000 15W Zen3
Ryzen 5 5600U 6C / 12T 2300 4200 7 1800 15W Zen3
Ryzen 3 5400U 4C / 8T 2600 4000 6 1600 15W Zen3
Zen2
Ryzen 7 5700U 8C / 16T 1800 4300 8 1900 15W Zen2
Ryzen 5 5500U 6C / 12T 2100 4000 7 1800 15W Zen2
Ryzen 3 5300U 4C / 8T 2600 3800 6 1500 15W Zen2

The simple way to identify this is with the digit after the number 5. Even digits (5800, 5600, 5400) are based on Zen 3, whereas odd digits (5700, 5500, 5300) are the updated versions of Zen 2. A lot of users will consider these latter processors identical to the previous generation, however we have learned that there are a number of key differences which we will cover in a separate article.

Nonetheless, AMD is promoting the top Ryzen 7 5800U as the company’s most efficient mobile processor to date. Based on a number of enhancements to the silicon design, AMD is claiming a +2hr battery life from a simple processor swap from Ryzen 4000 to Ryzen 5000, even if everything else in the chassis is the same. Nonetheless, AMD is stating that it has worked with controller companies, power delivery suppliers, and notebook designers in order to ensure that those OEMs that want to build systems with more than 20+ hours battery life have the tools to do so. Other OEMs however, particularly for low cost designs or perhaps education models, can freely change the processor from old to new with only a firmware update, as both Ryzen 4000 and Ryzen 5000 are pin compatible.

Overall AMD is claiming 150+ designs with Ryzen 5000 Mobile so far, a significant step up from the 100 designs on Ryzen 4000 Mobile. These are set to include high-end gaming designs with the latest premium graphics cards, a market that AMD has had difficulty breaking into so far.

AMD Generation Code Names
AnandTech Brand Core Graphics Process
Node
Mobile Processors
Cezanne Ryzen 5000 Mobile 8 x Zen 3 Vega 8 TSMC N7
Lucienne Ryzen 5000 Mobile 8 x Zen 2 Vega 8 TSMC N7
Renoir Ryzen 4000 Mobile 8 x Zen 2 Vega 8 TSMC N7
Picasso Ryzen 3000 Mobile 4 x Zen+ Vega 11 GF 12nm
Raven Ridge Ryzen 2000 Mobile 4 x Zen Vega 11 GF 14nm
Dali Athlon 3000 2 x Zen Vega 3 GF 14nm
Pollock ? 2 x Zen Vega 3 GF 14nm
Desktop Processors
Vermeer Ryzen 5000 16 x Zen 3 - TSMC N7
Matisse Ryzen 3000 16 x Zen 2 - TSMC N7
Pinnacle Ridge Ryzen 2000 8 x Zen+ - GF 12nm
Summit Ridge Ryzen 1000 8 x Zen - GF 14nm
HEDT Processors
Genesis Peak '4th Gen' Zen 3 - ?
Castle Peak Threadripper 3000 64 x Zen 2 - TSMC N7
Colfax Threadripper 2000 32 x Zen+ - GF 12nm
Whitehaven Threadripper 1000 16 x Zen - GF 14nm
Server Processors
Genoa '4th Gen' Zen 4 - ?
Milan EPYC 7003 64 x Zen 3 - TSMC N7
Rome EPYC 7002 64 x Zen 2 - TSMC N7
Naples EPYC 7001 32 x Zen - GF 14nm

Here is a handy table of processor codenames we might use at various parts of these review. These refer to AMD’s internal codenames for the silicon designs, and act as an easier way to talk about the hardware without constantly referring to the branding (especially if certain silicon is used in multiple product ranges).

Testing AMD’s Claims: The Notebook

For this review, AMD supplied the Ryzen 9 5980HS inside the ASUS ROG Flow X13 laptop. It is one of AMD’s key design wins, with a 35 W-grade processor in a sleek design aimed for mobility. As a reviewer who in a normal year spends a lot of time travelling, the specifications on the box make a lot of sense to my regular workflow.

The system features a 13.4-inch 360º hinged display, which as an IPS touchscreen with a 3840x2400 resolution (16:10, finally) running at 120 Hz with adaptive sync, Pantone color certified, and coated in Corning Gorilla Glass. The display is rated for 116% sRGB, 86% Adobe, and 85% DCI-P3.

Under the hood is that AMD Ryzen 9 5980HS processor, with eight Zen 3 cores and sixteen threads, with a 3.0 GHz base frequency and a 4.8 GHz single core turbo frequency, rated at 35 W. ASUS says that they buy the best versions of the 5980HS for the Flow X13 to ensure the best performance and battery life. This processor has Vega 8 graphics, however ASUS has paired it with a GTX 1650 4 GB discrete graphics processor, enabling CUDA acceleration as well as higher performance gaming when needed.

Our unit comes with 32 GB of LPDDR4X-4267 memory, as well as a Western Digital SN350 1TB PCIe 3.0 x4 NVMe storage drive. Both of these would appear to be the standard install for the Flow X13.

ASUS claims the 62 Wh battery is good for 18 hours of use, and the Flow X13 is one of a handful of devices that supports 100 W USB Type-C power delivery. ASUS claims the bundled charger can charge the unit from 0% to 60% in around 39 minutes.

Other features include a back-lit keyboard with consistently sized arrow keys, a full-sized HDMI output as well as a USB 3.2 Gen 2 (10 Gbps) Type-A port, a USB 3.2 Gen 2 (10 Gbps) Type-C ports, a 3.5 mm jack, and a custom PCIe 3.0 x8 output connector for use with ASUS’ XG Mobile external graphics dock. This custom graphics dock can come with a custom designed RTX 3070/3080, and along with graphics power also provides the system with four more USB Type-A ports, HDMI/DP outputs, and Ethernet. With this dock installed, technically the system would have three graphics cards.

All of this comes in at 2.87 lbs / 1.30 Kg, all for under 16mm thick. This is often a key category for both AMD and Intel when it comes to mobility combined with productivity. ASUS has not announced pricing of the ROG Flow X13 yet – the other model in the range is based on the Ryzen 9 5900 HS, but is otherwise identical.

This review is going to be mostly about the processor rather than the Flow X13, due to time constraints (our sample arrived only a few days ago). However, it is worth noting that as with most notebooks, the ROG Flow X13 comes with multiple power and performance modes.

In fact, there are two: Silent and Performance. In each mode there are different values for idle temperature, in order to keep the any audible noise lower, and then different values for power/thermals for turbo and sustained power draw.

These two differ primarily in the sustained power draw and thermal limits:

ASUS ROG Flow X13 Power Options
AnandTech Idle
Temp*
Power
Instant
Turbo
Power
Turbo
Temp
Turbo
Time
Sustained
Silent 70ºC 65 W 42 W 85ºC 6 sec 15 W @ 68ºC
Performance 65ºC 65 W 42 W 85ºC 120 sec 35 W @ 75ºC

*The idle temperature here is so high, as you'll see later in the review, because AMD's high-frequency levers are very aggressive such that our sensor monitoring tools are activating high frequency modes, despite the small load.

 

Testing AMD’s Claims: The Ryzen 9 5980HS

Similar to the launch of Ryzen 4000 Mobile, the unit AMD has supplied us is their top of the line but most efficient H-series processor. For the last generation it was the Ryzen 9 4900HS found in the ASUS ROG Zephyrus G14. The Zephyrus G14 is slightly bigger than the ROG Flow X14 we have today, but the GPU is also better on the G14 (2060 vs 1650). Both processors are rated at 35 W, and both showcase some of the best design AMD wants to lead with at the start of a generation.

The main competition for these processors is Intel’s Tiger Lake. A couple of weeks ago Intel announced its new line of H35 processors, whereby they boost the 15 W U-series processors up to 35 W for additional performance. We have no word on when those units will be in the market (we are told soon), however we have managed to secure an MSI Prestige 14 Evo which contains Intel’s best U-series processor (Core i7-1185G7) and allows for sustained performance at 35 W.

Comparison Points
AnandTech AMD
R9 5980HS
AMD
R9 4900HS
Intel Core
i7-1185G7
Intel Core
i7-1185G7
Device ASUS ROG Flow X13 ASUS ROG Zephyrus G14 Intel Reference Design MSI Presige 14 Evo
CPU R9 5980HS R9 4900HS i7-1185G7 i7-1185G7
DRAM 32 GB
LPDDR4-4267
16 GB
DDR4-3200
16 GB
LPDDR4-4267
16 GB
LPDDR4-4267
IGP Vega 8 Vega 8 Iris Xe 64 Iris Xe 64
dGPU GTX 1650 RTX 2060 - -
Storage WD SN350
1TB
PCIe 3.0 x4
Intel 660p
1TB
PCIe 3.0 x4
Samsung
1TB
PCIe 3.0 x4
Phison E16
512 GB
PCIe 3.0 x4

Alongside these numbers we also have historical data from Intel’s Tiger Lake reference platform which ran in 15 W and 28 W modes.

But first, let us discuss the new features in Ryzen 5000 Mobile.

Ryzen 5000 Mobile: SoC Upgrades
Comments Locked

218 Comments

View All Comments

  • vladx - Wednesday, January 27, 2021 - link

    What? Since Thunderbolt 3 has a 40Gbps bandwidth it is absolutely not "only using 4 PCIe 3.0 lanes on PCs that have Titan Ridge controllers.
  • Spunjji - Thursday, January 28, 2021 - link

    The short answer is: yes, it is.

    The long answer is:
    https://www.techspot.com/review/2104-pcie4-vs-pcie...
  • Tams80 - Monday, February 1, 2021 - link

    8x will be enough. It should only be a 2-3% drop in performance.

    Of course 16x would be nice, but I don't think OCuLink is available as that.
  • Fulljack - Wednesday, January 27, 2021 - link

    the FP5 package used by AMD mobile processor only allows PCIe 3.0 x8 connection to dGPU, but you still have extra x4/x4 connection for I/O and storage.

    when moving to AM4, desktop Renoir still have the same PCIe lanes as Matisse, that is 16+4+4 lanes.

    it's not a problem since TB3 eGPU are using PCIe 3.0 x4 anyway.
  • nils_ - Wednesday, January 27, 2021 - link

    I was wondering about that as well, it also seems a bit confusing with Tiger Lake (is it 4 or 8 lanes of PCIe 4.0?). The advantage with Tiger Lake is that it has TB4 integrated in the SoC, unfortunately I haven't seen any AMD based laptop with TB so far so I went with Intel to keep my docking station(s). Maybe this time around there will be a model foregoing the dGPU for a TB controller.
  • Spunjji - Thursday, January 28, 2021 - link

    TL has 4 lanes of PCIe 4.0
  • Spunjji - Thursday, January 28, 2021 - link

    "I've been seeing reports of it only having x8 PCIe 3.0 lanes, which could present a problem to AMD's apparent goal of pairing Cezanne with discrete GPUs."

    Nope. See all the announced devices with Cezanne and RTX 3070 or 3080 GPUs.

    It was never a problem with Renoir, either. People just came up with post-hoc rationalizations for why Intel still dominated gaming laptops despite having an inferior CPU.
  • ottonis - Tuesday, January 26, 2021 - link

    The mobile Zen3 CPUs are a great generational update. Glad to see a healthy increase in new design wins and one can only hope that AMD will be able to deliver all these CPUs to the OEMs in sufficient quantities so these notebooks will be available to the consumer.

    That being said, the true challenge is Apple Silicon. While AMD can beat the M1 CPU in multi core tasks, Apple will outclass everything x86 once they introduce their second gen silicon with much higher core count and other architectural improvements.

    So, I wonder what kind of strategy AMD (and Intel) will follow in the near future. I remember - maybe ~10+y ago - when AMD had some sort of transient partnership with ARM and everybody thought AMD would somehow implement ARM designs into some sort of hybride chip. For some reasons that never came to fruition.
    In order to stay relevant in the mobile (and desktop) CPU market, AMD will have to react to the huge attack from Apple silicon in one way or another. So, what does AMD have up their sleeves?

    Intel is apparently going the big.little route in their next generation of mobile CPUs with little Atom-based cores and big performance cores. I am curious what AMD is up to.
  • JfromImaginstuff - Tuesday, January 26, 2021 - link

    Well about AMD's relationship with arm, they have an arm license, so does Intel for that matter. So if x86 starts going south, AMD will almost certainly abandon it, and Intel most likely will do so as well especially with their new CEO.
  • Deicidium369 - Wednesday, January 27, 2021 - link

    LOL - Gelsinger's great grand kids will be on Social Security before that happens

Log in

Don't have an account? Sign up now